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SUMMARY

The dynamic and composite nature of propagation impairments that are incurred on

earth-space communications links at frequencies in and above the 30/20 GHz Ka band,

i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to

counter such degradations after the small link margins (typical of such frequency bands)

have been exceeded, necessitate the use of dynamic statistical identification and prediction

processing of the fading signal in order to optimally estimate and predict the levels of each

of the deleterious attenuation components. Such requirements are being met in NASA's

Advanced Communications Technology Satellite (ACTS) Project by the implementation of

optimal processing schemes derived through the use of the ACTS Rain Attenuation

Prediction Model and nonlinear Markov filtering theory. The ACTS Rain Attenuation

Prediction Model discerns climatological variations on the order of 0.5 ° in latitude and

longitude in the continental U.S. The static portion of the model gives precise availability

predictions for the "spot beam" links of ACTS. However, the smacture of the dynamic

portion of the model, which yields performance parameters such as fade duration

probabilities, etc., is isomorphic to the state-variable approach of stochastic control theory

and, as shown in this paper, is amenable to the design of such statistical fade processing

schemes which can be made specific to the particular climatological location at which they

are employed.



I. INTRODUCTION

The development of the ACTS Rain Attenuation Prediction Model [ 1,2,3], another

in a variety of such models that now exists, was in response to several system design and

performance requirements of satellite systems in and above 30/20 GHz (the Ka band); Such

a satellite system is NASA's Advanced Communication Technology Satellite (ACTS)

Project after which the model is named. Two major requirements are the ability to 1)

estimate the level of a communication signal fade due to rain on a satellite link using, in the

general case, attenuation measurements that may be corrupted with random as well as

systematic measurement errors (defined here as identification ) and 2) predict what such

attenuation levels will prevail a short time into the future so as to forewarn the need for the

deployment of a fade countermeasure (defined here as prediction ). For example, a situ-

ation may exist for the user of a small remote satellite terminal to employ the received com-

munications channel, with all its attendant power fluctuations due to modulation, etc., as

the source of measurement of link attenuation due to rain so as to drive some fade mitiga-

tion technique, the use of which is needed beyond some pre-established fade threshold.

Or, as in the case of ACTS, one may be operating at a frequency that is not only impaired

by rain but also by the phenomena of clear-air and/or cloud scintillation; here, one receives

the total fading signal and, if one is to have a reliable satellite communications link, must

separate out the component rain and scintillation effects since each must be dealt with in a

different manner (e.g., rain fade by power control and scintillation, if it proves to be a

problem, by time diversity transmission).

It is the purpose of this paper to indicate how results of the dynamic portion of the

ACTS Rain Prediction Model can be used in the implementation of processing schemes that

are robust to such scenarios indicated above. In particular, the simplest case is considered

whereby one has available attenuation measurements with associated measurement errors at

discrete points in time. From these discrete, "noisy" observations of link attenuation, it is

required to obtain optimal estimates of not only the satellite link attenuation that corre-
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spondedto themeasurement,butalsoanoptimalpredictionof whattheattenuationvalue

will beat thenext (future)samplingtime. Thisproblemis formedwithin thecontextof

non-linearMarkovfiltering. Theoptimalitycriterionusedwill betheminimizationof the

leastsquareerrorthatexistsbetweenthepredictedvalueof attenuationandthatestimated

from thenoisymeasurementprocess.Theonlyfadingmechanismthatwill beconsidered

hereis thatdueto rain; scintillationandothersimultaneoussignalpowerimpairmentscan

alsobeconsideredbutattheexpenseof amuchmorecomplicatedandinvolvedexposition.

Suchcaseswill bedifferedto futurepublications.

II. A BRIEF OVERVIEW OF THE DYNAMICS PORTION OF THE

ACTS RAIN ATTENUATION PREDICTION MODEL.

From the development of the ACTS Rain Attenuation Prediction Model (in particu-

lar, Section 5 of [3]), one models the temporal evolution of the link attenuation A(t)

through the parameter Xa(t), i.e.,

InA(t )- lnA m
x A (t) : (1)

tYlnA

t"

where A m is the median of the link attenuation and o_n A is the standard deviation of the

logarithm of attenuation; these two parameters are specific to the particular location, fre-

quency of operation, and geometry of the satellite link. It is the XA(t) parameter that is

given by, in the most general case, a multi-component Markov random process which is

determined by a system of first order stochastic differential equations. It is, however, ex-

pedient to reduce to a one component model with careful consideration given to the incor-

poration of the temporal smoothing process induced by the extended propagation path. In

particular, as was done in [3], one can consider (approximately) the one component pro-

cess given by the single first-order differential equation
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dXA
dt 7sXA + _/ 27S _ (t ) (2)

where the random function _'(t) is governed by Gaussian statistics with a zero mean (i.e.,

"white noise"):

and where 7S is a "smoothed" temporal parameter that is given by the solution of the tran-

scendental equation

_71 +exp - = (3)

exp 7s]

From geometrical considerations concerning the propagation path, characteristic rain cell

size, and long term spatial isotropy of rain cell movement, one has the following relation

that exists between the coefficients 71 and 72 that appear in Eq.(3):

2LcosO.]_l/272=71 c ] (4)

where L is the total propagation path length within the potential rain region, 0 is the link

elevation angle, and R C = 4 Km is the characteristic rain cell size as required by funda-

mental considerations and model constraints [3]. By the same considerations, one has for

the coefficient 71

2V -1
- - 0.1336m in (5)

_R c

where v = 14 m/s is the characteristic speed of the rain cell that is assumed in the model.

For a typical communications link with an elevation angle - 40 °, 7S - 0.06 min "1 = 0.001

sec" 1.
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In what follows, theonecomponentMarkovprocessXA(t) given by Eq.(2), with

contact made to the link attenuation A(t) through Eq.(1), will be used to derive an optimal

fade detection and prediction algorithm for use with measured (real time) fade data.

III. DEVELOPMENT OF AN OPTIMAL FADE IDENTIFICATION AND

PREDICTION ALGORITHM

A. The Observation and Sampling Model

Here, the problems of fade identification and prediction as defined in the introduc-

tion will be solved. At the outset, it is useful to consider the measurement process via the

following observation model"

Aobs(t) = A(t ) + n (t) (6)

where A(t) is the actual attenuation that exists on the communications link at time t, n(t) is

the associated measurement uncertainty or "noise", and Aobs(t) is the observed link attenu-

ation. The measurement noise, which can result from inaccuracies in the hardware of the

measurement process or from an assumed measurement function such as that used in

"frequency scaling" whereby a signal fade at one frequency is derived from a fade mea-

surement at another frequency, is a random function of time and can also be statistically

characterized by a white noise process, viz,

(n (t))= 0

(7)2

(n (tl)n (t2))=Cr n S(t 1 - t2)

where an is the standard deviation of the measurement noise. Remembering Eq.(1), one

has from Eq.(6),

Aobs(t)=A(XA,t ) + n(t) , A(XA,t )=Amexp((TlnAX A (t)) (8)
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for the observation model where the random process xA is governed by the stochastic dif-

ferential equation Eq.(2). The following problem can now be defined: given the measured

fade Aobs(t) and given Eqs.(8), (7), (2), and (1), it is desired to obtain an estimate of the

quantity XA(t) at time t (i.e., identification) as well as the extrapolated estimate of the

quantity XA(t + x) that should prevail at a future time t + x (i.e., prediction). Using

Eq.(1), one can then easily obtain the corresponding values A(t ) and A(t + "c).

This is formally a problem in the optimal (with respect to a given criterion) estima-

tion (or filtering) and prediction of a non-linear Markov continuous random process sam-

pied in time.

Since the random process in question is the quantity x A and it is desired to obtain

information concerning the instantaneous value of this quantity from the measurement of

Aobs, one must invariably deal with a parameter known as the a posteriori probability den-

sity P(XA(t) IAobs(t) ) governing the random process at a time t conditioned on the obser-

vation of the quantity Aobs(t). Once this probability density has been secured, one can

easily obtain descriptions of the random process x A in the form of statistical moments such

as the average x;(t ) ( referred to as the optimal estimate minimized with respect to the

8c

mean-square error), the associated standard deviation _rx_(t ) of the optimal estimate, etc.

Although both x(t) and Aobs(t) are, in general, continuous in the time variable, the

latter is actually sampled at discrete times ti with a corresponding time interval T separating

the samples, i.e., T = ti - ¥1 • Thus, due to this sampling process overlaid on the contin-

uous process Aobs(t), one must also now consider additional random processes which re-

sult from the sampling, viz,

A obs(tO = A obs(t )_ (t-ti) and x A (t_ = x A (t)S (t -t i ). (9)

One must thus amend the a posteriori probability density P(XA(t) t Aobs(t) ) to reflect this

circumstance and consider p (XA (t), xa (t) IA obs (t)), viz, the probability density gov-
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erningthecontinuousrandomprocessXA(t) and the sampled process x A (t)

on the value of the discrete measurement of Aobs(t) •

conditioned

B • The Statistical Identification of The Prevailing Link Attenuation

Level

Now the random process XA(t), described by Eq.(2), has associated with it a tran-

sition (and conditional) probability density p (Xa (t)[ _a (t3) giving the statistics connected

with the evolution of the sampled value X'A (ti) at a time ti to the value of its continuous

counterpart x a (t) a later time t > ti . Following the results in [2,3] (in particular, Eqs.(53)

and (54) of [3]), this transition probability density is given by the Kolmogorov equation

associated with the first order differential equation Eq.(2), i.e.,

_P(XA (t )l'XA (ti))-- Dxa[P(XA (t )l'_A (ti))] , t > t i
_t

(10)

where the differential operator Dx, _ (XA) ] for the Kolmogorov equation is given by

Oxa_e (XA)]--- )tS _-_ Af (3(,A)} + _ZS 2

_XA _X A

2

f (XA)

(11)

In an analogous fashion, the probability density p (X A (t), x A (t) I A obs (t)) is a transition

probability density governing the random processes Xa (t) and x A (t) conditioned on the set

of measured observations A obs (t), each of which is connected with the random process in

question via the observation model of Eq.(6) and the sampling model of Eq.(9). In this

case, the Kolmogorov Equation of Eq.(10) must be augmented with this (non-linear) ob-

servation model. In particular, amending the observation model of Eq.(6) with the sam-

pling model of Eq(9), one has that the quantity
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n (t) = A obs(t ) - A (_A ,t ) (12)

2

is a zero mean Gaussian random variable with variance ¢rn (by Eq.(7)). As shown in the

Appendix, using this fact in an extrapolated a posteriori probabilistic analysis for the evo-

lution of x a (t ), one obtains an integrodifferential equation for p (Xa (t ), x a (t ) IA oo s (t ))

a modified version of the Stratonovich Equation [4], well known in Markov filtering the-

ory, viz,

(x - t [( )1[Op A(t),XA(t)lAobs(ti) _DxaP XA(t),XA(t)]Aobs(ti) + (_(XA(t),ti) --
bt

-- _ _ O(XA" (t),ti)P(X A" (t),X A" (t)Iaobs(ti))dxa'dxa']X

× p(x a (t),x a (t)Iaobs(ti) )

where

(13)

1 2 (Aobs(t i )- A (_ ,t i ))2 (14)
dP(XA(t)'t')-_ 2_ n

It is important to note that Eq.(13) holds for times t within the interval ti < t < ti+ 1.

Obtaining a solution from Eq.(13) commences with writing the a posteriori proba-

bility density in the form

P(XA(t ),'XA(t )lAobs(ti))=P(XA(t )IXA(t))P(XA(t )lAobs(ti) ) (15)

Substituting Eq.il5) into Eq.(13), integrating the result with respect to x, and using the

facts that

f_ P(XA(I)lXA(t ))dXA= 1
and

f_ Dxa[P(XA(t)lXA(t ))]dx A 0
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(suchintegralsindicateintegrationoverall thepossiblevaluesrealizedby xA at a f'L_ed time

t and where the latter relation is obtained using Eq.(11) and the boundary conditions that

p (XA (t) Ixa (t)) and its first derivative vanish at x = + **) yields the relation

_gPlXa(t)lA°bs(ti))- [(btxa(t),ti ) --
Ot

-- f_ _P(XA" (t),ti)P(Xa" (t)laobs(ti)}dxa]P(Xa (t)laobs(ti ))
(16)

for ti < t < ti+ 1 . By substituting Eq.(16) back into Eq.(13), one then re-derives Eq.(10)

prescribing the probability density p (x a (t) Ix a (t)) thus making the proposed solution of

Eq.(15) self-consistent.

An approximate analytic expression can be obtained for Eq.(16). One notes that the

second term within the brackets is simply the average (O{t I) over all possible values of

x A. Since it is only a function Of t, and if the time interval t - ti is small as compared to

the characteristic time if variation for this average, one can neglect it and obtain a simpler

form which has the solution

If ]P(XA(t) lAobs(ti))=Nexp _(_A(t'),ti)dt' p('XA(ti)lAobs(ti))

where the normalization constant N is given by

(17)

N __

P (_A (ti ) IAobs(ti))

-1

(18)

Equations (17) and (18) define the "partition" representation of the a posteriori probability

density function [5].
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One now admits the well established Gaussian approximation, which demands that

the probability density p{ x a (t i )1 aob s (ti)) take the form

/ 1
P ('XA (ti) I A obs(ti )) = ft/

¥ 2zr K(t i ) ( _A(ti)--XA(ti)) 2 )
exp --

2 K(t i )

(19)

where x A (t i ) is the extrapolated estimate of the random process x A (t i ) available at time ti

and K(t i ) is the standard deviation of this estimate about the actual value; the extrapolated

estimate, which is obtained from the optimal estimate of the previous time interval, is em-

ployed here since it is the only aposteriori information that one has at time ti about the

random process x A (t) to combine with the observed quantity Aob s (t i ) to yield the statis-

tics that govern the possible values for "XA(ti). For this reason, K(t) is sometimes re-

ferred to as the standard deviation ( or, in general, the covariance) associated with the er-

rors of the extrapolated estimate. To make the problem defined by the substitution of

Eq.(19) into Eqs.(17) and (18) analytically amenable, one expands the function

qb_A(ti ),ti} that appears within the exponential functions in Eqs.(17)and (18) into a Taylor

series about the optimal estimate x a (t) obtained at the i th sampling time ti , retaining terms

up to the second to match that of Eq.(19). Using Eq.(9) in Eq.(14) and substituting this

composite result into the expansion and using Eq.(19), one obtains from Eqs.(17) and (18)

19 ([XA (t) l A obs (ti)) =

( 2)exp a(ti)(XA--X") ('XA? x_--

2crx ,(t i )

2 *
lrff x ,(ti ) exp a2(ti_(ti).)

(20)

10



where the quantity (YxA(ti) is the error covariance of the optimal estimate (the latter will be

defined shortly) given by

and

. ( )1(YxA(ti) - K -1 (t i ) - b (t i ) (21)

3_s(_, t_] 1 32 ]
a(t_= -- , b(t_ = _Ps(_'t'_-_ (22)

are coefficients that contain the observed sampled values A obs (ti); here,

_)s( XA (ti)' ti )= _)( XA (t), t )(_lt --ti). Using Eq.(14), one then obtains

a(ti)=((Yl2A_lA(_,tiXAobs(ti)-A(_A,ti) )

(23)

o-/
b (ti)= -- A(;,ti_Aobs(ti)- 2A(XA,ti))

Using the a posteriori probability density of Eq.(20), one can now obtain an ex-

pression for the optimal estimate x *(t_ of the value of _A (ti) connected with the observa-

tional data Aob s (ti). Of the many optimality criteria that can be used to define a particular

estimate, the one selected here is the simplest, viz, the criterion that minimizes the mean

square error which yields the relation

x A(ti)=f[_ X A(t'_p( xA(ti)lAobs(ti))dx

Substituting Eq.(20) into this and performing the integration yields the following recurrsion

relationship for the optimal estimate:
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X A (l'_ = _A (t3 + tYx(ti) a (t o (24)

As mentioned earlier, the extrapolated estimate X'A (t3 is that obtained from the op-

timal estimate of the previous sampling time ti-1 through the use of the transition probabil-

ity density defined by Eq.(10). The solution of this equation is well known [2,3] and is

given by

1
exp

=

X A (ti) -- _i "XA(ti-1)

2(1- @it

(25)

where @i- exp (-)'s (ti- ti-1 )). The extrapolated estimate _A (t.) at time ti given the a

N *

posteriori value XA (ti- 1) = XA (ti- 1) is simply

f _XAP(XA(ti) I_A(ti-1))dXA

Upon substituting Eq.(25) into this relationship and integrating, one obtains

X A (ti) = (I) i X A (ti-1) (26)

which, when used in Eq.(24), demonstrates the recurrsive nature of the estimate.

It now remains to obtain a similar expression for the standard deviation of the ex-

trapolated estimate K(t). Equation (19) essentially provides a working definition for this

quantity. In particular, one has
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2= p (XA(ti) I Aobs(t i ))d'x

In order to relate a value of this parameter at ti to the a posteriori values obtained at time ti-

1, one can use Eq.(15) to write the relationship

K(ti)=f_f____.(_A(ti)-'XA(ti))2p(_A'(ti),'XA(ti-1)lAobs(ti-1))d_ d'_"
(27)

o

Using the previously derived expressions of Eqs.(19) and (25) in Eq.(27) yields the re-

currsive relationship

2(. )K(t i ) = 1 + _i ¢rxA(ti-1 ) - 1 (28)

that relies on former values of a x A(ti ) obtained from Eq.(21).

Equations (24), (21), (26), and (28), in addition to the auxiliary relations of

Eq.(23) collectively compose the dynamic identification part of the problem defined at the

outset. The approximation used that allows one to write Eq.(17) as well as considerations

of the errors incurred in the optimal estimate place upper limits on the time interval [ti-1, ti)

between consecutive samples. However, the typical clock intervals - 1 second that are

encountered in practice are easily within this limit. It now remains to obtain a prescription

for the dynamic prediction of link fade levels into the future based on the data afforded

from this fade identification process.

C. The Prediction of Link Attenuation for Short Times into the Future

From some results of the foregoing, in particular, the solution given by Eq.(25) for

the transition probability density of the attenuation process, one can derive a relation yield-

ing the average value of the link attenuation at a time Tpred into the future. In particular, the

problem can be succinctly defined as follows: Given the fact that an optimal estimate XA (ti)
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isobtainedfor theattenuationprocessat thetimeti, and on the hypothesis that the attenua-

tion will increase, it is of interest to obtain the extrapolated estimate Z_ a (t i +Tpred) of the

change in the attenuation that will occur at a later time t i +Tpred. One then has for the total

value of this combined extrapolated optimal estimate of the attenuation process

A

X A (ti +Tpred) = X A (ti) + z_ A (l i +Tpred) (29)

By this formulation of the problem, one has

A

AX A (t i +Tpred) =

fO'Z_a(ti (X *_

= +Tpred) P a (ti +Tpred) > Xa (t_ + AX a (t i +Tpred ) IX a (t'_ (ZkXa )

(30)

where the conditional probability density is given by

(x .)P A (fi +Zpred) > XA (ti) + ZIXA (ti +Tpred) I X A (t'_ =

fl=-- p (X A "(t )IX A (t i )d x A"

a i)+Axa(ti+Tm.a)

(31)

To this end, substituting Eq.(25) into Eq.(31) and this result into Eq.(30) yields,

upon a change of variables,

.------- 1 erfc Y
AX A (ti +Tmea) 2 2D-(T

yay-
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}f_ erfc, (-rpree)Y)dy]
- x_(1- *pred (,,/213 (32)

2

where _precl = exp (I-_s Tpred) and D (Tp,ed) -1- (l)pred . In the approximation in

*( )which one can assume that x A 1--_pred = 0 relative to the range of integration and the

contributions of the integrands, the integrals in Eq.(32) can be analytically evaluated and, in

conjunction with Eq.(29), gives for the extrapolated optimal estimate of attenuation for a

future time t i +Tpred based on the estimate at time t i

where

, D (Tpred)
XA (t i +Tpred) = tFpred X A (ti) + (33)

4

4O(Zpred) (1 IfI)pred )ptrlJ-red -- 1 -
2zc

(34)

A limitation is placed upon the maximum value of Tpred by the approximation used

to evaluate the integrals of Eq.(32); in particular, one has

Tpred <<
tTln A

2_s(lnA(t)-InAm }

showing that, as can be expected, the value is a function of the prevailing link attenuation

A(t). A more rigorous analysis for this maximum value would involve considering the
.....-.--...

prediction error associated with Zkr A (t i +Tpred). However, since in the applications, one

usually only needs to predict no more than two to four time intervals ahead (i.e., typically -

2 to 4 seconds), this condition is easily met.
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IV. ALGORITHMIC IMPLEMENTATION OF THE FOREGOING

The synthesis of the relevant relations derived above is shown in Fig. 1 and com-

prises two separate sections: one that performs fade identification and the other that per-

forms fade prediction. In the identification section, D1 and 192 perform as discriminators

carrying out theoperations[aobs(t )- a (x a (ti))] and[aobs(t )- 2A (x A (ti))], respec-

tively, multipliers M1 and M2 form the operations needed to complete the emulation of the

relations given in Eq.(23), the inverters I perform multiplicative inversion, and S denotes

the emulation of the operation yielding Ar,,exp (%,A xA (t)}. Also, q'i denotes the multi-

/

2

plication by the discrete time transition factor exp (- Ys Ti), cI)i is the square of this factor,

and Ti is a time delay of Ti seconds. In the prediction section, once a time interval Tpred

is selected over which a fade prediction is to be made, D (Tprea) evaluates the operation

1 - exp ( - 2YsTprea) , _t, rea then performs the operation as specified by Eq.(34), and fi-

nally multiplier M3 forms the second member of the right side of Eq.(33).

Such an algorithm can be implemented either in software or hardware and is easily

included into the operation of any satellite earth station. Although the structure of the

algorithm remains the same in every application, several of the numerical coeficients which

it employs reflects the specific geometry and operating frequency of a satellite link as well

as the location of the earth terminal. For example, YS is a function of the propagation path

length through the potential rain region as well as the elevation angle, as shown by Eq.(4).

Not only is the link operating frequency reflected in the selection of the parameters A m and

CYln A that appear in each S module of Fig.l, but also the specific location of the earth sta-

tion due to the extremely detailed rain statistics data base of the ACTS rain attenuation

model (a geographical resolution of N 0.5 ° in latitude and longitude in the continental US,

essentially equivalent to about 6000 rain "zones") from which they are calculated. The

software implementation of the ACTS Rain Attenuation Prediction Model for this and other

general satellite system link design is available from COSMIC, NASA Software for Indus-

try, The University of Georgia, Athens, GA 30602, U.S.A.
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APPENDIX - A Derivation of Equation 13

Here, it is desired to augment the dynamic description of the random process x A (t)

that is afforded by the Kolmogorov equation, Eq. (10), with observed a priori measure-

ments A obs(ti) of the link attenuation which, through Eq.(8), is a convolution ofx'a (ti) as

well as the measurement noise n (t). It is thus expedient to consider a quantity that incor-

porates both aspects of apriori observation and dynamical transition, i.e., the conditional
/

transition probability density p IXa (t +At ), "_A (t +At ), A obs(ti +At )J a obs(ti )j which

/

incorporates two successive observations at time t i and at time t i +At with At = t i +1 - ti

used to explicitly denote the prevailing time increment, and with the proviso that

t i < t < t i +1. This probability density can be decomposed into two equivalent cascaded

fO1TflS

P _ A obs(ti + Zlt )l A obs(ti), X A (t + At ), "_A (t + At))x

and

x p ( X A (t + At ),'XA (t + At )l A obs(ti) )

P l X A (t +At ) i _ a (t +At )l A obs(ti), A obs(t i +At ))p{ A obs(t i +At )l A obs(t i) )

Equating these two representations and rearranging factors gives

PlXA (t+At )'_A (t+At )1 Aobs(ti),Aobs(t i +At ))= F(At )x

xp( aobs(t i + At )laobs(ti),Xa(t + At ),'_a(t + At ))x

xp(xa(t+At),'XA(t+At)laobs(ti) ) (A1)

-1

where   tl [ laobs tiaobs ti  isafactor atisin ependentofthepro ess
x A. The first probability density function on the right side of Eq. (A 1) is connected with the
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uncertaintyassociatedwith themeasurementprocess.Notingthatthemeasurementnoiseat

t i + At only affects the random quantity A obs(ti + At ) and since it is only the sampled

value _a (t + At ) that is connected with this sampled Gaussian noise process as defined by

Eq.(7), one has the following development:

--At= N exp - = exp _('XA (t + ),t + At )At
2

where N is a normalization constant and use was made of Eqs.(12) and (14) and the fact

that At is sufficiently small to warrant the series expansion in the last line. The second

probability density in Eq.(A1) is an extrapolated probability density function of the process

xa based on the a priori observation A obs (ti). Expanding this quantity into the first two

terms of its series representation yields

p (XA (t + At ), _A (t + At )1A obs(ti))= p (X A (t), _A (t)1Aobs(ti) ) +

+ dp,XA(t), (t)lAobs(ti),(_a ) At (A3)
dt

After the initial apriori input A obs(ti) at time ti, no other such information is used during

the time interval At thus allowing the time derivative in to be described by the Kolmogorov

equation, Eq.(10). Making this substitution and inserting this result and that of Eq.(A2)

into Eq.(A1) and retaining terms up to f'trst order in At yields

P{XA(t+At ),_A(t+At )lAobs(ti),Aobs(t i +At ))=C [P(XA(t ),'XA(t )lAobs(ti) )
+



+Dxa[P{XA(t),_A(t)lAobs(ti))]At +

+dp('XA(t+At),(t+At))P(XA(t),_A(t)lAobs(ti))At (A4)

where C = F(At)N is a constant (at least for a fixed At ) which must now be evaluated. To

this end, one integrates both sides of this equation over all values ofx z (t) and X'a (t) and,

noting the analogous relationships that follow Eq.(15), obtains

C = l+Atf__ f__ dp(_A(t+At),(t+At))P{Xa(t),_a(t)laobs(ti))dXAC_a] -1

_I--At f_f ff gPI'XA(t+At),(t+ZIt))P(XA(t),'XA(t)IAobs(ti)'dXAd_A (A5)

where, once again, the fact was used whereby At is small. Substituting this result back

into Eq.(A4) and retaining terms up to first order in At yields

p{ X A (t +At ),X'A (t +At )1A obs(ti),Aobs(ti +At ))=

=P( XA (t ), "XA (t )l Aobs(ti))+Dxa[P ( XA (t ),_A (t )l Aobs(ti))] At +

+[ ¢_a(t+At),(t+At))- f" ff o('£a'(t+At),t+At)×

× P(Xa'(t),_A'(t)laobs(ti)}dXa'd_a]P{Xa(t),Za(t)laobs(ti))At

Finally, moving the first member on the right side to the left side and dividing through by

At forms a different quotient which reduces to Eq.(13) after taking the limit At --)0.
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